Compare commits
3 Commits
fad840b624
...
ecb3c705c2
| Author | SHA1 | Date | |
|---|---|---|---|
| ecb3c705c2 | |||
| bfcba4660a | |||
| 128ed7994e |
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
|
|
@ -0,0 +1 @@
|
||||||
|
result/
|
||||||
|
|
@ -1,11 +1,8 @@
|
||||||
需要的 python包: numpy
|
需要的 python包: numpy, seaborn, matplotlib, scipy
|
||||||
|
|
||||||
执行python anchor.py后,自动将计算出的m点保存到本地,需要四个参数:
|
执行python anchor.py后,自动将计算出的m点保存到本地,需要四个参数:
|
||||||
|
|
||||||
input_file 级联数据文件路径;
|
input_file 级联数据文件路径;
|
||||||
|
result_path 计算出的结果保存路径;
|
||||||
output_file 计算出的m点保存路径;
|
|
||||||
|
|
||||||
anchor_budget m点预算;
|
anchor_budget m点预算;
|
||||||
|
|
||||||
obs_time 可观测时间,默认为-1,可不填写;
|
obs_time 可观测时间,默认为-1,可不填写;
|
||||||
|
max_cas_num 处理的事件数量,默认为-1,可不填写;
|
||||||
386
anchor.py
386
anchor.py
|
|
@ -1,7 +1,16 @@
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
|
import time
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import copy
|
import copy
|
||||||
import argparse
|
import argparse
|
||||||
|
import json
|
||||||
|
from scipy.optimize import curve_fit
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
import time
|
||||||
|
from matplotlib import font_manager
|
||||||
|
import seaborn as sns
|
||||||
|
import os
|
||||||
|
|
||||||
def find_max_indices_numpy(L_dict):
|
def find_max_indices_numpy(L_dict):
|
||||||
keys_arr = np.array(list(L_dict.keys()))
|
keys_arr = np.array(list(L_dict.keys()))
|
||||||
|
|
@ -73,9 +82,10 @@ def select_social_sensors(R, L_dict, user_event_dict, event_user_dict, b):
|
||||||
|
|
||||||
|
|
||||||
print(f"Select social sensors finish! Get social sensors, num: {len(A)}")
|
print(f"Select social sensors finish! Get social sensors, num: {len(A)}")
|
||||||
return A
|
return A, all_cas
|
||||||
|
|
||||||
def handle_cas(filename, obs_time=-1):
|
def handle_cas(args):
|
||||||
|
filename, obs_time = args.input_file, args.obs_time
|
||||||
print("Handle cascade begin!")
|
print("Handle cascade begin!")
|
||||||
user_event_dict = defaultdict(dict)
|
user_event_dict = defaultdict(dict)
|
||||||
event_user_dict = defaultdict(list)
|
event_user_dict = defaultdict(list)
|
||||||
|
|
@ -84,8 +94,8 @@ def handle_cas(filename, obs_time=-1):
|
||||||
for line in file:
|
for line in file:
|
||||||
|
|
||||||
cascades_total += 1
|
cascades_total += 1
|
||||||
# if cascades_total > 100:
|
if cascades_total > args.max_cas_num and args.max_cas_num != -1:
|
||||||
# break
|
break
|
||||||
parts = line.split(',')
|
parts = line.split(',')
|
||||||
cascade_id = parts[0]
|
cascade_id = parts[0]
|
||||||
activation_times = {}
|
activation_times = {}
|
||||||
|
|
@ -128,31 +138,379 @@ def handle_cas(filename, obs_time=-1):
|
||||||
|
|
||||||
return L_dict, user_event_dict, event_user_dict
|
return L_dict, user_event_dict, event_user_dict
|
||||||
|
|
||||||
def generate_anchors(input_file, output_file, anchor_budget, obs_time = -1):
|
def generate_anchors(args):
|
||||||
|
result_path, anchor_budget = args.result_path, args.anchor_budget
|
||||||
|
|
||||||
L_dict, user_event_dict, event_user_dict = handle_cas(input_file, obs_time)
|
L_dict, user_event_dict, event_user_dict = handle_cas(args)
|
||||||
|
|
||||||
num_nodes = len(L_dict.keys())
|
num_nodes = len(L_dict.keys())
|
||||||
|
|
||||||
|
anchor_num = 0
|
||||||
|
|
||||||
|
if anchor_budget > 0.02:
|
||||||
max_anchor_num = int(num_nodes*0.02)
|
max_anchor_num = int(num_nodes*0.02)
|
||||||
|
|
||||||
if anchor_budget > max_anchor_num:
|
|
||||||
print(f"Max anchor num is {max_anchor_num}, anchor_budget is set to {max_anchor_num}")
|
print(f"Max anchor num is {max_anchor_num}, anchor_budget is set to {max_anchor_num}")
|
||||||
anchor_budget = max_anchor_num
|
anchor_num = max_anchor_num
|
||||||
|
else:
|
||||||
A = select_social_sensors(R, L_dict, user_event_dict, event_user_dict, anchor_budget)
|
anchor_num = int(num_nodes*anchor_budget)
|
||||||
|
|
||||||
|
A, all_cas = select_social_sensors(R, L_dict, user_event_dict, event_user_dict, anchor_num)
|
||||||
|
os.makedirs(result_path, exist_ok=True)
|
||||||
|
output_file = os.path.join(result_path, f'anchors_{args.anchor_budget}.txt')
|
||||||
with open(output_file, 'w') as file:
|
with open(output_file, 'w') as file:
|
||||||
for item in A:
|
for item in A:
|
||||||
file.write(f"{item}\n")
|
file.write(f"{item}\n")
|
||||||
|
return A, all_cas, user_event_dict
|
||||||
|
|
||||||
|
# Logistic 函数定义
|
||||||
|
def logistic(t, K, r, t0):
|
||||||
|
return K / (1 + np.exp(-r * (t - t0)))
|
||||||
|
|
||||||
|
def find_inflection_logistic(t_list, c_list):
|
||||||
|
t_array = np.array(t_list)
|
||||||
|
c_array = np.array(c_list)
|
||||||
|
|
||||||
|
# 时间归一化到 [0, 1]
|
||||||
|
t_min = t_array.min()
|
||||||
|
t_max = t_array.max()
|
||||||
|
|
||||||
|
if len(set(c_array)) < 3 or max(c_array) <= 1 or t_max - t_min == 0:
|
||||||
|
return None
|
||||||
|
t_array_normalized = (t_array - t_min) / (t_max - t_min)
|
||||||
|
|
||||||
|
try:
|
||||||
|
p0 = [max(c_array) if max(c_array) > 0 else 1.0, 1.0, 0.5] # 确保 K 初始值不为0,如果c_array全是0
|
||||||
|
|
||||||
|
# 检查 c_array 是否有效
|
||||||
|
if max(c_array) <= 0: # 如果c_array都是0或负数,也无法拟合S曲线
|
||||||
|
print("警告: 累计值 (c_list) 没有正增长,无法拟合S曲线。")
|
||||||
|
return None
|
||||||
|
|
||||||
|
# 调整 bounds,如果 K 的下限是0,max(c_array)也可能是0,可能导致问题
|
||||||
|
# bounds = ([0, 0, 0], [np.inf, 10, 1]) # K r t0
|
||||||
|
# K > 0 (所以下限设为很小的正数,或基于数据)
|
||||||
|
# r > 0 (增长率)
|
||||||
|
# t0 在 [0, 1] 范围内
|
||||||
|
bounds = ([1e-6, 1e-6, 0], [np.inf, 10, 1]) # K, r 应该为正
|
||||||
|
|
||||||
|
popt, _ = curve_fit(logistic, t_array_normalized, c_array, p0=p0, bounds=bounds, maxfev=10000)
|
||||||
|
K, r, t0 = popt
|
||||||
|
return t0
|
||||||
|
except (RuntimeError, ValueError):
|
||||||
|
print(f"警告: 曲线拟合失败或参数无效")
|
||||||
|
return None
|
||||||
|
|
||||||
|
# 获取所有事件的爆发时间
|
||||||
|
def get_t0(args):
|
||||||
|
input_file, result_path = args.input_file, args.result_path
|
||||||
|
|
||||||
|
print("To get All Cas' T0")
|
||||||
|
os.makedirs(result_path, exist_ok=True)
|
||||||
|
json_file = os.path.join(result_path, 'prepare.json')
|
||||||
|
prepare = {}
|
||||||
|
if os.path.exists(json_file):
|
||||||
|
print(f"文件 {json_file} 存在。")
|
||||||
|
with open(json_file, 'r', encoding='utf-8') as f:
|
||||||
|
prepare = json.load(f)
|
||||||
|
return prepare
|
||||||
|
t0_dict = {}
|
||||||
|
num_time_points = 50 # 你希望在平均趋势图上采样的点数,可以调整
|
||||||
|
common_normalized_timeline = np.linspace(0, 1, num_time_points)
|
||||||
|
nodes_in_bins = {i: 0 for i in range(len(common_normalized_timeline) - 1)}
|
||||||
|
|
||||||
|
interpolated_counts_all_cascades = []
|
||||||
|
cascades_total = 0
|
||||||
|
t0_mean = 0
|
||||||
|
with open(input_file) as file:
|
||||||
|
for line in file:
|
||||||
|
cascades_total += 1
|
||||||
|
if cascades_total > args.max_cas_num and args.max_cas_num != -1:
|
||||||
|
break
|
||||||
|
parts = line.split(',')
|
||||||
|
cascade_id = parts[0]
|
||||||
|
|
||||||
|
paths = parts[1:]
|
||||||
|
t_max = 0
|
||||||
|
t_min = float('inf')
|
||||||
|
cas_set = set()
|
||||||
|
times = []
|
||||||
|
counts = []
|
||||||
|
for p in paths:
|
||||||
|
nodes = p.split(':')[0].split('/')
|
||||||
|
time_now = int(p.split(':')[1])
|
||||||
|
if time_now > t_max:
|
||||||
|
t_max = time_now
|
||||||
|
if time_now < t_min:
|
||||||
|
t_min = time_now
|
||||||
|
node = nodes[-1]
|
||||||
|
node_id = int(node)
|
||||||
|
cas_set.add(node_id)
|
||||||
|
times.append(time_now)
|
||||||
|
counts.append(len(cas_set))
|
||||||
|
|
||||||
|
sorted_times = sorted(times)
|
||||||
|
if t_max - t_min <= 0:
|
||||||
|
continue
|
||||||
|
nodes_in_bin = {i: 0 for i in range(len(common_normalized_timeline) - 1)}
|
||||||
|
for i in range(len(times)):
|
||||||
|
participation_time = (sorted_times[i] - t_min)/(t_max - t_min)
|
||||||
|
sorted_times[i] = participation_time
|
||||||
|
bin_index = np.digitize(participation_time, common_normalized_timeline, right=False) - 1
|
||||||
|
if bin_index == -1 and participation_time == common_normalized_timeline[0]:
|
||||||
|
bin_index = 0
|
||||||
|
elif bin_index == len(common_normalized_timeline) - 1:
|
||||||
|
if participation_time == common_normalized_timeline[-1]:
|
||||||
|
bin_index = len(common_normalized_timeline) - 2
|
||||||
|
else:
|
||||||
|
continue
|
||||||
|
if 0 <= bin_index < len(nodes_in_bin):
|
||||||
|
nodes_in_bins[bin_index] +=1
|
||||||
|
nodes_in_bin[bin_index] += 1
|
||||||
|
|
||||||
|
interpolated_counts = np.interp(common_normalized_timeline,
|
||||||
|
sorted_times,
|
||||||
|
counts)
|
||||||
|
estimated_increments_between_common_times = np.diff(interpolated_counts)
|
||||||
|
interpolated_counts_all_cascades.append(estimated_increments_between_common_times)
|
||||||
|
|
||||||
|
t0 = find_inflection_logistic(sorted_times, counts)
|
||||||
|
if t0 is None:
|
||||||
|
continue
|
||||||
|
t0_dict[cascade_id] = t0
|
||||||
|
t0_mean += t0
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
t0_mean /= len(t0_dict)
|
||||||
|
stacked_interpolated_counts = np.vstack(interpolated_counts_all_cascades).tolist()
|
||||||
|
counts_0 = np.array([nodes_in_bins[i] for i in sorted(nodes_in_bins.keys())])
|
||||||
|
all_counts = (counts_0 / counts_0.max()).tolist()
|
||||||
|
|
||||||
|
|
||||||
|
prepare['t0'] = t0_dict
|
||||||
|
prepare['t0_mean'] = t0_mean
|
||||||
|
prepare['interpolated_counts_sum'] = stacked_interpolated_counts
|
||||||
|
prepare['interpolated_counts_step_avg'] = all_counts
|
||||||
|
|
||||||
|
try:
|
||||||
|
with open(json_file, 'w', encoding='utf-8') as f:
|
||||||
|
json.dump(prepare, f, indent=4, ensure_ascii=False)
|
||||||
|
print(f"t0_dict已成功保存到 JSON 文件: {json_file}")
|
||||||
|
except TypeError as e:
|
||||||
|
print(f"错误: 字典中可能包含无法序列化为 JSON 的数据类型。错误: {e}")
|
||||||
|
except IOError:
|
||||||
|
print(f"错误: 无法打开或写入文件 '{json_file}'。")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"保存 JSON 文件时发生未知错误: {e}")
|
||||||
|
|
||||||
|
return prepare
|
||||||
|
|
||||||
|
|
||||||
|
def analyse_result(node_list, user_event_dict, prepare, args):
|
||||||
|
result_path = args.result_path
|
||||||
|
t0_dict = prepare['t0']
|
||||||
|
t0_mean = prepare['t0_mean']
|
||||||
|
anchors_activation_times_before_t0 = defaultdict(list)
|
||||||
|
anchors_activation_times = defaultdict(list)
|
||||||
|
cas_set = set()
|
||||||
|
for k,v in user_event_dict.items():
|
||||||
|
if k in node_list:
|
||||||
|
for cas_id, ac_time in v.items():
|
||||||
|
cas_set.add(cas_id)
|
||||||
|
if cas_id not in t0_dict:
|
||||||
|
continue
|
||||||
|
anchors_activation_times_before_t0[k].append(ac_time - t0_dict[cas_id])
|
||||||
|
anchors_activation_times[k].append(ac_time)
|
||||||
|
|
||||||
|
anchors_avg_activation_time_before_t0 = dict()
|
||||||
|
anchors_avg_activation_time = dict()
|
||||||
|
|
||||||
|
for node_id, times in anchors_activation_times_before_t0.items():
|
||||||
|
if times:
|
||||||
|
anchors_avg_activation_time_before_t0[node_id] = (sum(times) / len(times))
|
||||||
|
else:
|
||||||
|
anchors_avg_activation_time_before_t0[node_id] = None
|
||||||
|
|
||||||
|
for node_id, times in anchors_activation_times.items():
|
||||||
|
if times:
|
||||||
|
anchors_avg_activation_time[node_id] = (sum(times) / len(times))
|
||||||
|
else:
|
||||||
|
anchors_avg_activation_time[node_id] = None
|
||||||
|
|
||||||
|
anchors_total_avg_time_before_t0 = sum(t for t in anchors_avg_activation_time_before_t0.values() if t is not None) / len(anchors_avg_activation_time_before_t0)
|
||||||
|
anchors_total_avg_time = sum(t for t in anchors_avg_activation_time.values() if t is not None) / len(anchors_avg_activation_time)
|
||||||
|
|
||||||
|
os.makedirs(result_path, exist_ok=True)
|
||||||
|
|
||||||
|
anylyze_result = {}
|
||||||
|
anylyze_result['anchors_act_cas_num'] = len(cas_set)
|
||||||
|
anylyze_result['act_cas'] = list(cas_set)
|
||||||
|
anylyze_result['anchors_total_avg_time_before_t0'] = anchors_total_avg_time_before_t0
|
||||||
|
anylyze_result['anchors_avg_activation_time_before_t0'] = anchors_avg_activation_time_before_t0
|
||||||
|
anylyze_result['anchors_total_avg_time'] = anchors_total_avg_time
|
||||||
|
anylyze_result['anchors_avg_activation'] = anchors_avg_activation_time
|
||||||
|
|
||||||
|
json_file = os.path.join(result_path, f'anylyze_result_{args.anchor_budget}.json')
|
||||||
|
try:
|
||||||
|
with open(json_file, 'w', encoding='utf-8') as f:
|
||||||
|
json.dump(anylyze_result, f, indent=4, ensure_ascii=False)
|
||||||
|
print(f"anylyze_result已成功保存到 JSON 文件: {json_file}")
|
||||||
|
except TypeError as e:
|
||||||
|
print(f"错误: 字典中可能包含无法序列化为 JSON 的数据类型。错误: {e}")
|
||||||
|
except IOError:
|
||||||
|
print(f"错误: 无法打开或写入文件 '{json_file}'。")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"保存 JSON 文件时发生未知错误: {e}")
|
||||||
|
|
||||||
|
print("开始绘制激活时间图 ")
|
||||||
|
# --- 绘制激活时间图 ---
|
||||||
|
important_times = [t for t in anchors_avg_activation_time_before_t0.values() if t is not None]
|
||||||
|
# 然后继续绘制图表
|
||||||
|
# 假设已经有 important_times 和 random_times
|
||||||
|
plt.figure(figsize=(10, 6))
|
||||||
|
sns.kdeplot(important_times, label='anchors', fill=True, color='red', linewidth=2)
|
||||||
|
|
||||||
|
plt.title('Anchors activate time')
|
||||||
|
plt.xlabel('Time')
|
||||||
|
plt.ylabel('P')
|
||||||
|
plt.legend()
|
||||||
|
plt.grid(True)
|
||||||
|
plt.tight_layout()
|
||||||
|
|
||||||
|
fig_file_1 = os.path.join(result_path, f'anchor_act_time_{args.anchor_budget}.png')
|
||||||
|
plt.savefig(fig_file_1, # 文件名
|
||||||
|
dpi=300, # 可选:分辨率 (dots per inch)
|
||||||
|
bbox_inches='tight',# 可选:尝试裁剪掉空白边缘
|
||||||
|
)
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
print("开始绘制趋势图 ")
|
||||||
|
|
||||||
|
# --- 绘制趋势图 ---
|
||||||
|
min_time = 0.0
|
||||||
|
max_time = 1 # 假设最大观察时间是 0.5,你可以根据你的数据调整
|
||||||
|
bin_width = 0.01
|
||||||
|
num_bins = int(np.ceil((max_time - min_time) / bin_width)) # 向上取整计算bin的数量
|
||||||
|
|
||||||
|
# 创建时间段的边界
|
||||||
|
# 例如:[0.0, 0.1, 0.2, 0.3, 0.4, 0.5]
|
||||||
|
time_bin_edges = np.linspace(min_time, max_time, num_bins + 1)
|
||||||
|
|
||||||
|
nodes_in_bins = {i: 0 for i in range(len(time_bin_edges) - 1)}
|
||||||
|
for node, participation_time in anchors_avg_activation_time.items():
|
||||||
|
bin_index = np.digitize(participation_time, time_bin_edges, right=False) - 1
|
||||||
|
if bin_index == -1 and participation_time == time_bin_edges[0]:
|
||||||
|
bin_index = 0
|
||||||
|
elif bin_index == len(time_bin_edges) - 1:
|
||||||
|
if participation_time == time_bin_edges[-1]:
|
||||||
|
bin_index = len(time_bin_edges) - 2
|
||||||
|
else:
|
||||||
|
continue
|
||||||
|
if 0 <= bin_index < len(nodes_in_bins):
|
||||||
|
nodes_in_bins[bin_index] += 1
|
||||||
|
|
||||||
|
|
||||||
|
plt.figure(figsize=(10, 6))
|
||||||
|
|
||||||
|
bin_labels = []
|
||||||
|
for i in range(len(time_bin_edges) - 1):
|
||||||
|
start_time = time_bin_edges[i]
|
||||||
|
end_time = time_bin_edges[i+1]
|
||||||
|
# 你可以用区间的字符串表示,或者区间的中心点
|
||||||
|
bin_labels.append(f"[{start_time:.2f}-{end_time:.2f})")
|
||||||
|
# bin_labels.append(f"{start_time:.1f}-") # 更简洁的标签,只显示起始
|
||||||
|
|
||||||
|
# 获取每个 bin 的计数值
|
||||||
|
counts_0 = np.array([nodes_in_bins[i] for i in sorted(nodes_in_bins.keys())])
|
||||||
|
counts = (counts_0 / counts_0.max()).tolist()
|
||||||
|
# X 轴的位置 (用于条形图)
|
||||||
|
x_positions = time_bin_edges[:-1] + bin_width/2
|
||||||
|
bars = plt.bar(x_positions, counts,
|
||||||
|
width=bin_width, # 条形的宽度
|
||||||
|
color='skyblue', # 条形的颜色
|
||||||
|
edgecolor='black') # 条形的边框颜色
|
||||||
|
# bar_index = 0
|
||||||
|
# for bar in bars:
|
||||||
|
# yval = bar.get_height()
|
||||||
|
# if yval > 0: # 只为非零的条形添加文本
|
||||||
|
# plt.text(bar.get_x() + bar.get_width()/2.0, yval + 0.05, # 文本位置微调
|
||||||
|
# counts_0[bar_index],
|
||||||
|
# ha='center', # 水平居中
|
||||||
|
# va='bottom') # 垂直对齐方式
|
||||||
|
# bar_index +=1
|
||||||
|
|
||||||
|
# stacked_interpolated_counts = np.array(prepare['interpolated_counts'])
|
||||||
|
|
||||||
|
# stacked_log_counts = stacked_interpolated_counts
|
||||||
|
# # 沿着级联的维度 (axis=0) 计算平均值
|
||||||
|
# average_counts_trend = np.mean(stacked_log_counts, axis=0) # (num_time_points,)
|
||||||
|
# max_counts = average_counts_trend.max()
|
||||||
|
|
||||||
|
# std_counts_trend = np.std(stacked_log_counts, axis=0)
|
||||||
|
# sem_counts_trend = std_counts_trend / np.sqrt( average_counts_trend.shape[0])
|
||||||
|
# # 计算95%置信区间 (使用1.96作为Z分数)
|
||||||
|
# confidence_interval_upper = average_counts_trend + 1.96 * sem_counts_trend
|
||||||
|
# confidence_interval_lower = average_counts_trend - 1.96 * sem_counts_trend
|
||||||
|
|
||||||
|
# average_counts_trend_normalized = average_counts_trend / max_counts
|
||||||
|
# confidence_interval_upper_normalized = confidence_interval_upper / max_counts
|
||||||
|
# confidence_interval_lower_normalized = confidence_interval_lower / max_counts
|
||||||
|
# confidence_interval_lower_corrected = np.maximum(0, confidence_interval_lower_normalized)
|
||||||
|
|
||||||
|
# common_normalized_timeline = np.linspace(0, 1, average_counts_trend.shape[0])
|
||||||
|
# plt.plot(common_normalized_timeline, average_counts_trend_normalized, label='Average Participation Trend', color='blue', linewidth=2)
|
||||||
|
|
||||||
|
# # (可选) 绘制置信区间或标准差区域
|
||||||
|
# plt.fill_between(common_normalized_timeline,
|
||||||
|
# confidence_interval_lower_corrected,
|
||||||
|
# confidence_interval_upper_normalized,
|
||||||
|
# color='blue', alpha=0.2, label='95% Confidence Interval')
|
||||||
|
|
||||||
|
# counts_step = prepare['interpolated_counts_step_avg']
|
||||||
|
# common_normalized_timeline = np.linspace(0, 1, len(counts_step))
|
||||||
|
# plt.plot(common_normalized_timeline, counts_step, label='Average Participation Trend', color='blue', linewidth=2)
|
||||||
|
|
||||||
|
|
||||||
|
# --- 使用 plt.axvline() 绘制垂直红线 ---
|
||||||
|
plt.axvline(x=t0_mean, # 线的 x 坐标
|
||||||
|
color='red', # 线的颜色
|
||||||
|
linestyle='--', # 线型 (例如 'solid', '--', '-.', ':')
|
||||||
|
linewidth=2, # 线的宽度
|
||||||
|
label=f'Average outbreak time = {t0_mean}')
|
||||||
|
fig_file_2 = os.path.join(result_path, f'trend_{args.anchor_budget}.png')
|
||||||
|
plt.savefig(fig_file_2, # 文件名
|
||||||
|
dpi=300, # 可选:分辨率 (dots per inch)
|
||||||
|
bbox_inches='tight',# 可选:尝试裁剪掉空白边缘
|
||||||
|
)
|
||||||
|
plt.close()
|
||||||
|
return
|
||||||
|
|
||||||
def parse_args():
|
def parse_args():
|
||||||
parser = argparse.ArgumentParser(description='Parameters')
|
parser = argparse.ArgumentParser(description='Parameters')
|
||||||
parser.add_argument('--input_file', default='./dataset_for_anchor.txt', type=str, help='Cascade file')
|
parser.add_argument('--input_file', default='./dataset_for_anchor.txt', type=str, help='Cascade file')
|
||||||
parser.add_argument('--output_file', default='./anchors.txt', type=str, help='Anchors save file')
|
parser.add_argument('--result_path', default='./result/', type=str, help='result save path')
|
||||||
parser.add_argument('--anchor_budget', default=100, type=int, help='Anchors num')
|
parser.add_argument('--anchor_budget', default=0.005, type=float, help='Anchors num')
|
||||||
|
parser.add_argument('--max_cas_num', default=-1, type=int, help='Cascade num')
|
||||||
parser.add_argument('--obs_time', default=-1, type=int, help='Anchors observe time, default seeting is -1, meaning can observe all')
|
parser.add_argument('--obs_time', default=-1, type=int, help='Anchors observe time, default seeting is -1, meaning can observe all')
|
||||||
|
parser.add_argument('--key_node_json', default='./key_node.json', type=str, help='key_node_json save file')
|
||||||
return parser.parse_args()
|
return parser.parse_args()
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
args = parse_args()
|
args = parse_args()
|
||||||
generate_anchors(args.input_file, args.output_file, args.anchor_budget, args.obs_time)
|
|
||||||
|
#===========执行m点挖掘算法, 返回m点以及感知的级联数量=================
|
||||||
|
A, all_cas, user_event_dict = generate_anchors(args)
|
||||||
|
|
||||||
|
# #===========读取其他算法挖掘重要节点=================
|
||||||
|
# with open(args.key_node_json, 'r', encoding='utf-8') as f:
|
||||||
|
# key_node_json = json.load(f) # 从文件对象 f 加载 JSON
|
||||||
|
# print("JSON 文件成功加载!")
|
||||||
|
# key_node_json['res']
|
||||||
|
|
||||||
|
#===========分析结果=================
|
||||||
|
print("开始分析结果")
|
||||||
|
prepare = get_t0(args)
|
||||||
|
analyse_result(A, user_event_dict, prepare, args)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
100
anchors.txt
100
anchors.txt
|
|
@ -1,100 +0,0 @@
|
||||||
154624
|
|
||||||
166401
|
|
||||||
48133
|
|
||||||
121862
|
|
||||||
3083
|
|
||||||
57356
|
|
||||||
146451
|
|
||||||
397331
|
|
||||||
67102
|
|
||||||
82463
|
|
||||||
23074
|
|
||||||
49186
|
|
||||||
48167
|
|
||||||
77357
|
|
||||||
75822
|
|
||||||
143413
|
|
||||||
290884
|
|
||||||
360517
|
|
||||||
48199
|
|
||||||
64077
|
|
||||||
7250
|
|
||||||
51293
|
|
||||||
361568
|
|
||||||
509538
|
|
||||||
26212
|
|
||||||
25221
|
|
||||||
44166
|
|
||||||
247942
|
|
||||||
8841
|
|
||||||
434324
|
|
||||||
126616
|
|
||||||
64158
|
|
||||||
176812
|
|
||||||
233648
|
|
||||||
50356
|
|
||||||
197814
|
|
||||||
445625
|
|
||||||
63161
|
|
||||||
106701
|
|
||||||
472794
|
|
||||||
588514
|
|
||||||
535781
|
|
||||||
412904
|
|
||||||
517867
|
|
||||||
55029
|
|
||||||
108281
|
|
||||||
216314
|
|
||||||
59135
|
|
||||||
292613
|
|
||||||
11527
|
|
||||||
247568
|
|
||||||
84756
|
|
||||||
309528
|
|
||||||
217373
|
|
||||||
30500
|
|
||||||
3366
|
|
||||||
291121
|
|
||||||
333115
|
|
||||||
78139
|
|
||||||
9026
|
|
||||||
118597
|
|
||||||
145744
|
|
||||||
409428
|
|
||||||
139100
|
|
||||||
43877
|
|
||||||
57711
|
|
||||||
515444
|
|
||||||
121205
|
|
||||||
1917
|
|
||||||
60286
|
|
||||||
315281
|
|
||||||
70552
|
|
||||||
58265
|
|
||||||
47514
|
|
||||||
56728
|
|
||||||
49565
|
|
||||||
138654
|
|
||||||
66976
|
|
||||||
80291
|
|
||||||
49575
|
|
||||||
70058
|
|
||||||
522157
|
|
||||||
83390
|
|
||||||
83394
|
|
||||||
123331
|
|
||||||
3524
|
|
||||||
82897
|
|
||||||
27604
|
|
||||||
48086
|
|
||||||
149465
|
|
||||||
3034
|
|
||||||
83419
|
|
||||||
427485
|
|
||||||
48094
|
|
||||||
41956
|
|
||||||
491493
|
|
||||||
456174
|
|
||||||
144371
|
|
||||||
84982
|
|
||||||
50168
|
|
||||||
Loading…
Reference in New Issue
Block a user