174 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			174 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from collections import defaultdict
 | 
						|
import numpy as np
 | 
						|
import copy
 | 
						|
import argparse
 | 
						|
import json
 | 
						|
import numpy as np
 | 
						|
import os
 | 
						|
 | 
						|
 | 
						|
def find_max_indices_numpy(L_dict):    
 | 
						|
    keys_arr = np.array(list(L_dict.keys()))
 | 
						|
    values_arr = np.array(list(L_dict.values()))
 | 
						|
    max_val_from_dict = max(L_dict.values()) # 或者 np.max(values_arr)
 | 
						|
 | 
						|
    indices = np.where(values_arr == max_val_from_dict)[0]
 | 
						|
    max_keys_np_way = keys_arr[indices]
 | 
						|
    return max_keys_np_way, max_val_from_dict
 | 
						|
 | 
						|
def R(event_dict):
 | 
						|
    mean = 0
 | 
						|
    for _,v in event_dict.items():
 | 
						|
        mean += -v
 | 
						|
    mean /= len(event_dict)
 | 
						|
    return mean
 | 
						|
    
 | 
						|
 | 
						|
def select_social_sensors(R, L_dict, user_event_dict, event_user_dict, b, anchor_screen):
 | 
						|
    """
 | 
						|
    Parameters:
 | 
						|
    - R: reward function, R(A) returns a numeric value
 | 
						|
    - L_dict:  dict of node -> integer (event num)
 | 
						|
    - user_event_dict: user -> event -> active_time
 | 
						|
    - event_user_dict: event -> user_list
 | 
						|
    - b: budget (numeric)
 | 
						|
 | 
						|
    Returns:
 | 
						|
    - A: selected set of social sensors
 | 
						|
    """
 | 
						|
    print("Select social sensors begin!")
 | 
						|
    user_event_dict_ = copy.deepcopy(user_event_dict)
 | 
						|
    L_dict_ = copy.deepcopy(L_dict)
 | 
						|
    
 | 
						|
    V = list(L_dict_.keys())
 | 
						|
    A = []
 | 
						|
    f = lambda A: len(A)
 | 
						|
    all_cas = 0
 | 
						|
    while any(s not in A for s in V) and f(A) < b:
 | 
						|
        
 | 
						|
        indices_np, max_val_from_dict = find_max_indices_numpy(L_dict_)
 | 
						|
        if max_val_from_dict == 0:
 | 
						|
            print("no extra node in cas!!!!!")
 | 
						|
            break
 | 
						|
        TAR_set = set(indices_np)
 | 
						|
 | 
						|
        delta = {}
 | 
						|
        cur = {}
 | 
						|
        for s in TAR_set:
 | 
						|
            delta[s] = float('inf')
 | 
						|
            cur[s] = False
 | 
						|
 | 
						|
        c_star = []
 | 
						|
        while True:
 | 
						|
            s_star = max(delta, key=delta.get)
 | 
						|
            c_star = user_event_dict_[s_star]
 | 
						|
            if cur[s_star] == True:
 | 
						|
                if delta[s_star] >= anchor_screen:
 | 
						|
                    A.append(s_star)
 | 
						|
                break
 | 
						|
            else: 
 | 
						|
                delta[s_star] = R(c_star)
 | 
						|
                cur[s_star] = True
 | 
						|
 | 
						|
        if delta[s_star] < anchor_screen:
 | 
						|
            L_dict_[s_star] = 0
 | 
						|
            continue
 | 
						|
 | 
						|
        all_cas += len(c_star)
 | 
						|
        for cas_id in list(c_star.keys()):
 | 
						|
            uc = event_user_dict[cas_id]
 | 
						|
            for v in uc:
 | 
						|
                if v in L_dict_.keys():
 | 
						|
                    L_dict_[v] -= 1              
 | 
						|
                _ = user_event_dict_[v].pop(cas_id)
 | 
						|
        print(f"Add a social sensor, sensors num is {len(A)}")
 | 
						|
        print(f"Anchor id: {s_star}")
 | 
						|
        print(f"all_cas is {all_cas}")
 | 
						|
        print(f"TAR_set size: {len(TAR_set)}")
 | 
						|
        if all_cas >= len(event_user_dict):
 | 
						|
            user_event_dict_ = copy.deepcopy(user_event_dict)
 | 
						|
            L_dict_ = copy.deepcopy(L_dict)
 | 
						|
            for s in A:
 | 
						|
                L_dict_[s] = 0
 | 
						|
            all_cas = 0
 | 
						|
            print(f"All cas has been perception, add extra node")
 | 
						|
        
 | 
						|
    
 | 
						|
    print(f"Select social sensors finish! Get social sensors, num: {len(A)}")
 | 
						|
    return A, all_cas
 | 
						|
 | 
						|
def handle_event(event_dict, obs_time):
 | 
						|
 | 
						|
    user_event_dict = defaultdict(dict)
 | 
						|
    event_user_dict = defaultdict(list)
 | 
						|
    cascades_total = 0
 | 
						|
    for cascade_id, event_list in event_dict.items():
 | 
						|
 | 
						|
        cascades_total += 1
 | 
						|
 | 
						|
        activation_times = {}
 | 
						|
 | 
						|
        t_max = 0
 | 
						|
        t_min = float('inf')
 | 
						|
        for u_t_dict in event_list:
 | 
						|
 | 
						|
            time_now = int(u_t_dict['act_time'])
 | 
						|
            if time_now > t_max:
 | 
						|
                t_max = time_now
 | 
						|
            if time_now < t_min:
 | 
						|
                t_min = time_now
 | 
						|
 | 
						|
            node_id = u_t_dict['user_id']
 | 
						|
            
 | 
						|
            if time_now > obs_time and obs_time != -1:
 | 
						|
                continue
 | 
						|
 | 
						|
            if node_id in activation_times.keys():
 | 
						|
                activation_times[node_id] = min(time_now, activation_times[node_id])
 | 
						|
            else:
 | 
						|
                activation_times[node_id] = time_now
 | 
						|
        
 | 
						|
        print(f"cascade_id:{cascade_id}, t_min:{t_min}")
 | 
						|
        
 | 
						|
 | 
						|
        for k,v in activation_times.items():
 | 
						|
            event_user_dict[cascade_id].append(k)  
 | 
						|
            if t_max > t_min:
 | 
						|
                user_event_dict[k][cascade_id] = (v-t_min)/(t_max-t_min)
 | 
						|
                            
 | 
						|
    L_dict = {}
 | 
						|
 | 
						|
    for k,v in user_event_dict.items():
 | 
						|
        L_dict[k] = len(v.keys())
 | 
						|
          
 | 
						|
    return L_dict, user_event_dict, event_user_dict
 | 
						|
 | 
						|
def generate_anchors(event_dict, anchor_budget, anchor_screen, obs_time, result_path, anchor_num=-1):
 | 
						|
    
 | 
						|
    L_dict, user_event_dict, event_user_dict = handle_event(event_dict, obs_time)
 | 
						|
 | 
						|
    print(f"Handle cascade file finish! Users num is {len(L_dict)}")
 | 
						|
    os.makedirs(result_path, exist_ok=True)
 | 
						|
    json_file = os.path.join(result_path, f'user_event.json')
 | 
						|
    try:
 | 
						|
        with open(json_file, 'w', encoding='utf-8') as f:
 | 
						|
            json.dump(user_event_dict, f, indent=4, ensure_ascii=False)
 | 
						|
        print(f"user_event_dict已成功保存到 JSON 文件: {json_file}")
 | 
						|
    except TypeError as e:
 | 
						|
        print(f"错误: 字典中可能包含无法序列化为 JSON 的数据类型。错误: {e}")
 | 
						|
    except IOError:
 | 
						|
        print(f"错误: 无法打开或写入文件 '{json_file}'。")
 | 
						|
    except Exception as e:
 | 
						|
        print(f"保存 JSON 文件时发生未知错误: {e}")   
 | 
						|
 | 
						|
    if anchor_num == -1:
 | 
						|
        anchor_num = len(L_dict)*anchor_budget
 | 
						|
    
 | 
						|
    A, all_cas = select_social_sensors(R, L_dict, user_event_dict, event_user_dict, anchor_num, anchor_screen)
 | 
						|
    os.makedirs(result_path, exist_ok=True)
 | 
						|
    output_file = os.path.join(result_path, f'anchors_{anchor_num}.txt')
 | 
						|
    with open(output_file, 'w') as file:
 | 
						|
        for item in A:
 | 
						|
            file.write(f"{item}\n")
 | 
						|
    
 | 
						|
    return A, all_cas, user_event_dict |